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1. Abstract 
Isolated mass-gap black holes are a unique type of black hole that fall within a range of masses in which it can be difficult to 

identify a stellar mass. In this mass-range, both neutron stars and black holes exist these black holes being mass-gap black holes. 

Current scientific methods utilize statistical analysis to classify such mass-gap stellar masses as black hole, neutron star, etc., but 

this can be a long and time-consuming process. We propose a novel machine learning driven approach to identifying such objects 

within the mass-gap automatically using Hubble Space Telescope (HST) microlensing surveys. We develop synthetic data based on 

existing classifications and compare the classification performance of three different model architectures on the data for a binary 

classification task. After training a Feed Forward Neural Network, a Radial Basis Function Network, and a Deep Belief Network, 

we find that the best candidate for mass- gap black hole and neutron star classification is the Feed Forward Neural Network with a 

test-set classification accuracy of 98.6%. 
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3. Introduction 
Isolated mass-gap black holes are a unique type of black hole 

that fall within a mass range in which black holes are not 

typically found [1] specifically forming between 2-5M, or 

solar masses. This range, known as the ”mass gap” serves as 

an area of uncertainty when differentiating between black 

holes and neutron stars. A common black hole, known as a 

stellar mass black hole, is formed when a massive star 

collapses, leaving behind the remnants which form a black 

hole. This type of black hole typically has a masses tens of 

times the mass of the sun, and are relatively well understood 

in comparison to other types of black holes. Isolated mass-

gap black holes, on the other hand, fall within a range in  

which black holes should not form, known as the ”mass gap” 

In this range of masses, it can be difficult to predict whether  

 

an object is a neutron star or black hole. 

 

A current method for identifying isolated mass gap black 

holes is gravitational microlensing [7], a technique leveraged 

by Lam, et al. in a 2022 study [8]. Gravitational microlensing 

is a technique that leverages the bending of light when a 

black hole passes a star [7]. The study by Lam et al offers an 

analysis of five candidate isolated mass-gap black holes, with 

a specific focus on candidate OB110462. The analysis was 

conducted through Bayesian inference and the Multi Nest 

nested sampling routine [9], and concluded that OB110462 is 

a black hole. 

 

In a preceding study, Lam et al developed a simulation 

software, PopSyCLE or Population Synthesis Code for Com- 

pact Microlensing Events [3], that is designed to simulate 

microlensing events in the galaxy. 
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Figure 1: Schematic of Machine Learning pipeline used to 

detect mass- gap black holes in this work. First, we collect 

data from both labelled Hubble Space Telescope (HST) [2] 

microlensing surveys, and PopSyCLE [3] simulated surveys; 

compile into a dataset; and feed into a Generative Adversarial 

Network (GAN) for synthetic data by the TableGAN [4] data 

synthesis architecture. Then, we train three separate neural 

networks on the data: a deep belief network [5], a radial basis 

function network [6], and a feed-forward neural network. 

 

 
 

Current approaches to identification of isolated mass-gap 

black holes have proven to be very tedious due to the 

magnitude of measurements involved in analysis of mass- 

gap object data. Data analyzed is derived from gravitational 

lensing signals. Excluding mass, these measurements have 

been proven to often be inconclusive when identifying 

objects in the mass-gap, but successful when determining the 

presence of these objects in LIGO [10], Virgo [11], KAGRA 

[12] collaboration studies. 

 

Identifying and characterizing objects found in this mass- gap 

range has proven to be a challenge for research in this field. 

Traditional methods have encountered limitations as a result 

of the complexity and uncertainly involved in the data 

analysis process. We propose a machine learning approach to 

classify isolated mass-gap black holes found in the lower 

mass-gap. Machine learning models are designed to process 

vasts amount of data, and identify patterns within these 

datasets. In practical use, a model will be given training data 

on which it is able to identify these patterns, then evaluated 

on testing data to observe performance on unseen data. By 

identifying patterns in gravitational lensing data, in relation 

to the type of object observed in the mass-gap, a machine 

learning approach can prove to be proficient in the 

classification of mass-gap black holes. 

 

A 2021 study by Datta, et al. [13] took the knowledge that the 

tidal-deformability (TD) and tidal-heating (TH) parameters in 

gravitational wave detectors have slight differences, and 

attempted to use this knowledge to discern objects found in 

the mass-gap. However, the study found limitations in doing 

so, in that there is a constraint in identifying objects found 

beyond a certain distance from the detection facility. This 

suggests that relying fully upon gravitational data obtained 

from gravitational lensing instruments may have constraints 

in identifying objects due to changes in the TD and TH 

parameters as distance increases, when dealing with 

statistical analysis. The application of machine learning in 

this context can prove to be proficient, in that a machine 

learning model is capable of processing large amounts of 

data, that can encompass many more parameters at once. This 

will allow the model to identify more complex patterns that 

involve each of these parameters. 

 

In this study, as shown in fig. 1, we propose a method to 

determine the feasibility of machine learning in 

differentiating between mass gap objects as neutron stars or 

black holes for accelerated detection capabilities. We use the 

Hubble Space Telescope [2] and PopSyCLE [3] synthetic 

simulation data used from experiments to train a Deep Belief 

Network, Radial Basis Function Network, and Feed Forward 

Neural Network to evaluate the feasibility of this method. 

 

4. Data Preparation 
4.1. Data sourcing and compilation 

We aggregate the Hubble Space Telescope (HST) [2] and 

PopSyCLE [3] simulation data from the experiments of Lam 

et al [8]. Specifically, HST data provides labeled candidates 

of mass gap black holes and neutron stars and PopSyCLE 

simulations include labeled, non-massgap black holes and 

neutron stars. Each microlensing data example holds the time 

of closes approach in days (t0), the impact parameter (u0), 

the Einstein crossing time in days (t-E), Einstein radius in 

milliampere seconds (theta-E), the microlensing parallax (pi- 

E), the galactic proper motion vector (mu-b-s), the mass of 

the detected object from the lens (mass-L), the lens-source 

microlensing parallax (pi-rel), the lens-source galactic proper 

motion vector (mu-b-rel), the lens-source proper motion 

vector (mu-rel), and the identity of the object detected a black 

hole or a neutron star (target). 

 

4.2. Synthetic data generation 

Due to the limited number of samples collected from HST 

microlensing surveys, we design a Generative Adversarial 

Network (GAN) [14] for generating new data. A GAN is 

traditionally trained for tasks such as image generation, 

where a generator G is trained in an adversarial game against 

discriminator D. G generates samples, which D determines 

are real samples or samples from G. The goal of the network 

is to train a generator that can successfully trick D into 

predicting that the outputs of G are real. We refer the reader 

to the work of Good fellow, et al. [14] for more specific 

information on GANs and their learning procedure. 

 

We design a GAN based off of the Table GAN [4] method in 

order to generate synthetic tabular data. As shown in Figure 

2, we utilize a convolutional process to filter input noise into 

microlensing survey data from the data distribution of HST 

surveys. The process is repeated for 100 epochs. Finally, a 

total of 6,000 synthetic mass-gap black hole and mass-gap 

neutron star microlensing candidates from the trained 

generator are concatenated with the existing microlensing 

surveys for a total dataset length of 9,000. This composed 

dataset is given by Ddata. 

 

An 80/20 train/validation and test split was then passed on 

the data. 

 

4.3. Data resampling 

The combination of the synthetically generated data along 
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with the original data in Ddata had very high skew. In order to 

reduce this skew, resampling was applied through the 

SMOTE - Tomek link algorithm [15]. 

 

By the SMOTE Tomek link algorithm, we iteratively up 

sample the minority class either mass gap black holes or 

mass-gap neutron stars and down sample the majority class. 

Essentially, this method allows for the data to be balanced 

between both classes. 

 

Figure 2: Due to limited number of microlensing surveys in 

our dataset, we utilize a GAN [14] predict continuous outputs 

that resemble those of mass- gap HST microlensing surveys 

for synthetic data. Specifically, the Table GAN [4] method is 

adapted for generating synthetic, tabular data for our training 

pipeline. 

 
 

5. Model Architectures 

5.1. Loss calculations 

This problem is bivariate and a binary classification problem 

with a total of 2 classes: mass-gap black holes and mass-gap 

neutron stars As such, a categorical cross entropy loss must 

be applied as the optimization objective for a model learning 

to distinguish between the 2 classes. This loss is given by the 

following equation: 

 
 

where Lnet is the categorical cross entropy loss between the 

predicted set y and the label set y for one of the 2 classes j at 

a given sample i, with M total classes and N total samples. 

This optimization objective Lnet can then be used to train 

several machine learning pipelines to determine effectiveness 

and the robustness of machine learning to detect mass-gap 

objects versus non mass-gap objects. In this work, we train 

three different network architectures to gauge robustness of 

the model: A deep belief network [5], a radial basis function 

network [6], and a simple feed forward neural network. The 

Results are then compared in Sec. IV. 

 

5.2. Deep belief network 

We train a Deep Belief Network, hereafter referred to as a 

DBN, on the dataset Ddata. 

 

A DBN can be described as an ensemble model which 

contains several Restricted Boltzmann Machines (RBMs) [5] 

linked to each other. A RBM is a simple neural network with 

two layers an input layer along with one hidden layer, as 

shown in Figure 3. The simplicity of the network enables it 

to be used in more complex network ensembles while also 

learning useful data representations. RBMs are popular for 

tasks including classification and basic regression due to their 

restricted design meaning that, within the same layer, nodes 

are not interconnected, allowing individual nodes to pass data 

more relevant to the classification task. 

 

Figure 3: Schematic of Restricted Boltzmann Machine [5] 

architecture and design. There is an input visible layer along 

with a hidden layer acting as the output layer of the model. 

 
 

Stacking several RBMs together forms a DBN, a set of 

overlapping RBMs as shown in fig. 4. Each individual RBM 

can learn specific representations and the ensemble learns 

from the higher order of non-linearity. In this work, we train 

a DBN model with 10 visible units each along with an input 

layer connected to the model. This network is then trained for 

20 epochs. 

 

5.3. Radial basis function network 

A Radial Basis Function Network (RBFN) [6] is made up of 

several Radial Basis Functions (RBFs). The RBFs are 

attached together as “nodes” within a network to act as a 

composite radial basis function network. 

 

The radial basis function is a simple neural network that is 

given by three layers an input layer with no activation or 

weights, a hidden layer, and a final output layer. 

Mathematically, the inputs are given by an input vector x 

such that  

 

 
 

where n is the number of input features and each value 

corresponds to a particular input node within the RBF’s input 

layer. The hidden layer then acts upon the input values x 

using guassian functions, computing  
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Figure 4: Schematic of Deep Belief Network [5] architecture 

and design. Overlapping RBMs are constructed to form the 

DBN architecture. 

 
 

Figure 5: Schematic of Radial Basis Function Network [6] 

architecture and design. The Radial Basis Functions are used 

to create an ensemble RBFN. The three layer model consists 

of an input layer, a hidden layer with radial basis, Gaussian 

activations, and the final layer consists of simple summation 

nodes. 

 
 

For a given set of j hidden layer nodes with learnable 

parameters a, b and c such that 

 
 

Finally, the output layer takes the vector xhidden and computes 

a summation over the vector to determine the output value Y 

such that  

 
We then train this model for 20 epochs as with the DBN 

described in Sec. III-B. 

 

D. Feed Forward Neural Network 

A simple feed forward neural network is implemented as the 

third model in our comparison. We employ simple linear 

layers along with ReLu activations after each linear layer. We 

apply 2 hidden layers along with one output layer that ends in 

a soft max activation function. We then train this model for 

20 epochs as with the DBN described in Sec. III-B. 

 

E. Training Details 

After implementing all model architectures, each network 

was trained for 20 epochs, as stated before. Additionally, a 

learning rate of 0.001 was used for all models and the loss 

Lnet was computed as the optimization objective. The Adam 

[16] optimizer was used as the optimization framework. 

 

6. Results 

6.1. Metrics 

For metrics, we utilize classification accuracy, precision, 

recall and F1 score. For clarity, the metrics are defined as 

follows: 

 
 

6.2. Network comparison 

We test all models on the test set of roughly 2,500 examples. 

The corresponding precision, recall, accuracy, and F1 scores 

are then given. 

 

The Deep Belief Network generally performs poorly on the 

test dataset, achieving high recall but low accuracy and 

precision. As shown in Figure 6, the confusion matrix shows 

that the Deep Belief Network is unable to learn the non-

linearity of the classification problem.  

 

Figure 6: Confusion matrix of the Deep Belief Network 

predictions on the test set. The Deep Belief Network 

performs poorly and learns an incorrect representation it only 

predicts neutron star probabilities. 
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Unlike the Deep Belief Network, the Radial Basis Function 

Network performs well across the classification tasks due to 

its neural network node-like structure. The model achieves 

both high accuracy, precision, F1, and recall as shown in fig. 

7. 

 

Table 1: Model Scores on Test Set. 

  Precision Recall Accuracy F1 

Deep 

Belief 

Network 

0.511 

1.00 0.511 0.676 

Radial 

Basis 

Function 

Network 

0.994 

0.973 0.983 0.983 

Feed 

Forward 

Network 

0.997 

0.976 0.986 0.986 

 

Figure 7: Confusion matrix of the Radial Basis Function 

Network predictions on the test set. The Radial Basis 

Function Network far outperforms the Deep Belief Network. 

A visible diagonal is apparent on the confusion matrix 

indicating high classification performance. 

 
 

The Feed Forward Neural Network also performs well, 

achieving a strong downward diagonal slope in the confusion 

matrix shown in fig. 8. 

 

Finally, we compare all three models across the evaluation 

metrics. We find that the Feed Forward Neural Network and 

the Radial Basis Function Network both perform well, with 

the Feed Forward Neural Network achieving the highest 

classification accuracy. This can be attributed to the Feed 

Forward Neural Network’s ability to understand more non- 

linear data relationships. 

 

Furthermore, we note that both the Feed Forward and Radial 

Basis Networks have slight difficult in classifying the black 

hole and both have a ą 1% false negative rate. This could be 

attributed to remaining skew in the data even after 

resampling. 

 

7. Conclusions and Future Work 

We report three machine learning models a deep belief 

network, radial basis function network, and a feed forward 

neural network that have the ability to discern between 

objects within the mass-gap range as neutron stars or black 

holes. Our custom data pipeline enables higher quality 

learning on existing, small sample sized datasets. 

 

We find that both the radial basis function network and feed 

forward neural network considerably outperform the deep 

belief network, illustrating the degree of non-linearity of 

mass- gap objects as well as the ability for heuristics to 

distinguish between stellar objects within the mass-gap range. 

 

Figure 8: Confusion matrix of the Feed Forward Neural 

Network predictions on the test set. The Feed Forward 

Network has results comparable to those of the Radial Basis 

Function Network. The confusion matrix illustrates a strong 

diagonal indicating high classification performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our work provides insight into the formation of black holes 

within the mass-gap. The phenomenon of stellar objects, to 

the extent of current literature, is still not fully understood, 

the ability to distinguish between different objects that form 

in this range of masses is critical in the continued research of 

this class of black hole and neutron star. 

 

The implementation of machine learning into this problem 

can be applied in further research to better classify future 

mass-gap objects, as the data derived from gravitational 

lensing is highly complex and intricate, creating limitations 

for direct statistical analysis to discern objects found in the 

mass gap. Ultimately, our proposed solution finds promising 

results in identifying these objects. 

 

Future work could include larger sample sizes of unlabeled 

gravitational lensing data in order to learn an unsupervised or 

weakly-supervised model for stellar object classification, 

though this was outside the focus of our work as we aimed to 

specifically distinguish between neutron stars and black holes 

within the mass-gap to aid the discovery of black holes 

within the mass gap. 

 

Other ongoing work includes incorporating larger, labeled 

samples within our dataset in order to reduce the number of 

generated samples within the training and testing dataset. 

This would also enable the model to better learn patterns 

within the data for higher and more reliable performance. 

 

The reported models can be used in future studies analyzing 

mass-gap data through the gravitational lensing medium in 

order to expedite results and ultimately improve 

understanding of patterns within mass-gap black hole and 

mass-gap neutron star formation along with their non-mass 
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gap counterparts. Finally, the presented work has the ability 

to significantly improve the quality of scientific 

understanding of the mass gap. 
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