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1. Abstract 
Globally, diabetic retinopathy (DR) and glaucoma (GL) are major contributors to permanent vision loss hence, it is cruc ial to 

detect these conditions early and accurately in order to inhibit their progression. It is possible to misclassify fundus photos 

taken with varying field of view and resolution settings because key characteristics are lost. Specifically, this research 

suggests a multi-scale assisted DL model for precise DR and GL categorization. This research demonstrates automated 

diabetic retinopathy identification using a proprietary Convolutional Neural Network (CNN) model trained on the publicly 

accessible Messidor dataset. A foundation of deep learning supports the network. The proposed CNN architecture includes 

many convolutional layers with ReLU activation, max pooling, batch normalization, and dropout before a sigmoid-based 

output element for binary classification. Impressive performance is demonstrated by the experimental results, which include 

an F1-score of 99.42%, a recall of 99.90%, a precision of 98.86%, and an accuracy of 99.37%. To top it all off, the model's 

99.98 AUC was far higher than that of ResNet50, KNN, and InceptionV3, which are considered benchmark models. The 

results show that the proposed CNN is strong and can be used in clinical settings to screen for diabetic retinopathy 

automatically and detect it early. 

 
2. Keywords 
Diabetic Retinopathy (DR), Glaucoma, Retinal Fundus 

Images, MESSIDOR dataset, Deep learning, Convolutional 

Neural Network (CNN)). 

 

3. Introduction 
Healthcare systems worldwide are increasingly challenged by 

the rising burden of chronic diseases, with diabetes mellitus 

standing out as a critical global health issue [1,2]. As the 

prevalence of diabetes continues to surge, so too does the 

incidence of its associated complications, which place 

considerable strain on healthcare infrastructure and patient 

quality of life [3]. Among these problems, ocular diseases are 

a major source of vision loss; the two most prevalent and 

serious eye disorders associated with diabetes are glaucoma 

and diabetic retinopathy (DR) [4]. A microvascular problem 

of diabetes, diabetic retinopathy, if left untreated, can 

gradually harm the retina, leading to gradual vision loss or 

perhaps blindness [5]. Mild non-proliferative abnormalities 

are the first stage, while severe proliferative retinopathy with 

macular oedema and retinal haemorrhage is the last stage 

[56,7]. In a similar vein, glaucoma, which is a cluster of 

ocular neuropathies defined by optic nerve injury, can coexist 

with DR and further endanger eyesight, especially as it 

frequently does not present symptoms until irreversible 

damage has already taken place [8]. The coexistence of these 

conditions, especially in diabetic patients, amplifies the 

complexity and urgency of timely and accurate diagnosis [9]. 

 

Retinal fundus imaging is very important for finding and 
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classifying diabetic retinopathy and glaucoma correctly, 

which is necessary for early treatment and keeping your sight 

[10,11]. To diagnose ocular diseases, fundus pictures are 

essential because they show the retinal components in great 

detail, including the macula, optic disc, and blood vessels. 

Particularly in large-scale screening programs, manual image 

evaluation is laborious, subjective, and prone to 

inconsistency owing to inter-observer variability [12,13]. The 

creation of automated diagnostic frameworks that are 

effective and dependable is in high demand due to these 

restrictions. DL and ML have recently [14,15] risen to 

prominence as a result of these difficulties, thanks to their 

capacity to accurately complete complicated picture 

classification tasks. An outstanding skill of CNN, a subtype 

of DL models, has been shown to automatically extract and 

learn hierarchical visual features from retinal pictures. This 

allows for reliable categorization of DR and Glaucoma, even 

under changeable imaging conditions [16-18]. Such AI-

powered approaches provide scalable answers for mass 

screening while decreasing reliance on human experts' 

interpretations [19,20]. This study explores the application of 

a deep CNN technique for the simultaneous classification of 

retinal fundus pictures for glaucoma and diabetic retinopathy. 

With the aim of improving early detection and helping 

ophthalmologists provide data-driven eye care in a timely 

manner, the suggested approach tackles important problems 

such feature heterogeneity, class imbalance, and diagnostic 

accuracy. 

 

3.1. Motivation with contribution 

DR and glaucoma are leading causes of permanent blindness, 

and their prevalence has increased in tandem with the 

worldwide prevalence of diabetes. While it is crucial to 

discover these problems early on, the existing manual 

screening procedures are labour-intensive, resource-intensive, 

and vulnerable to human subjectivity, which can lead to a 

lack of consistency. Retinal fundus scans can show modest 

and overlapping signs of DR and glaucoma, making 

definitive diagnosis even more challenging. Because of this, 

scalable and automated diagnostic solutions are critically 

needed. This study aims to construct a deep CNN-based 

framework that can reliably classify both DR and Glaucoma 

from retinal pictures. The motivation for this effort comes 

from the limits of standard screening procedures as well as 

the potential of AI in medical imaging. In the long run, this 

technique can help minimize diabetic avoidable blindness by 

improving early diagnosis, decreasing diagnostic errors, and 

bolstering large-scale screening programs. The main 

contribution focuses on developing robust diabetic 

retinopathy and glaucoma detection systems for automated 

retinal screening applications: 

 

 Modern pre-processing methods were used to increase 

the consistency and quality of the images in the Messi or 

dataset, making it more suitable for diabetic retinopathy 

identification. 

 Performed EDA on the Messi dataset to visualize 

diabetic retinopathy severity levels, uncover class 

imbalance, and extract insights to inform pre-processing 

and model training decisions. 

 Rotated, flipped, zoomed, and adjusted brightness and 

contrast among other data augmentation procedures to 

correct data imbalance. 

 Creation of a new CNN architecture tailored for the 

detection of ocular diseases. 

 Creating a comprehensive evaluation approach that 

includes recall, accuracy, precision, and F1-score four 

industry-standard categorization metrics to ensure robust 

model validation and practical application in clinical 

situations. 

 

3.2. Justification and novelity 

The proposed approach uses a custom CNN to ensure 

domain-specific feature extraction tailored for diabetic 

retinopathy detection, as opposed to using pre-trained models 

like ResNet50 or InceptionV3. Pre-trained models are 

designed for general image classification tasks and may not 

effectively capture subtle pathological patterns in fundus 

images. In contrast, the custom CNN is lightweight, built 

from scratch, and optimized through a specialized 

preprocessing pipeline, including grayscale conversion, 

Gaussian denoising, and histogram equalization, which 

significantly enhances retinal feature visibility. Targeted data 

augmentation further improves the model's sensitivity and 

generalization by addressing class imbalance. Because of 

this, the model performs better on all evaluation criteria, 

especially recall, showing that it can detect DR cases more 

correctly with fewer false negatives, which is crucial for 

clinical applications. 

 

3.3. Structure of paper  

The paper's outline is as follows: Results for diabetic 

retinopathy detection from the literature review are presented 

in Section II. In Section III, we explore the proposed CNN 

method in further detail. The experimental data and model 

comparisons are examined in Section IV. Lastly, this study 

concludes and recommends. 

 

4. Literature Review 
This section discusses the literature review on AI for accurate 

and efficient diabetic retinopathy and glaucoma detection. 

Table I provides a summary of the literature reviews 

discussed below: 

Guzal Kangilbaeva (2025) Automated diabetic retinopathy 

diagnosis using DL algorithms in AI systems has progressed 

beyond visualizing and automatically segmenting the ocular 

fundus imaging DR dataset to diagnosing phases of diabetic 

retinopathy. In the medical sector, ophthalmology, screening 

for diabetic retinopathy, and the use of ML, AI, DL, and 

neural networks, have been able to diagnose this potentially 

blinding condition. AI programs have demonstrated 

sensitivity ranging from 82‐99.1% AI programs undoubtedly 

help doctors diagnose vision‐threatening diabetic retinopathy 

densely populated, low‐income areas [21]. 

 

Karambelkar, et al. (2024) DL algorithms have dramatically 

improved the ability to screen, identify, segment, forecast, 

and categorize in numerous medical domains, such as those 

pertaining to the retina, heart, pathology, and abdominal 

regions. Among the most important causes of blindness in 

people of working age is diabetic retinopathy. For a good 

prognosis, early diagnosis of this illness is essential 

Researchers show how to recognize diabetic retinopathy 

staging using color fundus pictures and CNN [22]. 

 

Afshan, Chakraverti and Chhabra (2024) used DL methods, a 

standardization methodology was used to a dataset of 5,000 

retinal photos to guarantee that each image is of the same size 

at 256×256 pixels, in order to automate the detection of 

glaucoma. To make datasets more diverse and models more 
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resilient, data augmentation methods including rescaling, 

rotation, and vertical and horizontal shifts are often 

employed. When training a model to identify glaucoma, the 

MobileNetV3 architecture makes use of two optimizers: 

Stochastic Gradient Descent (SGD) and Adam. Thanks to its 

high classification accuracy, the model is able to detect 

glaucoma effectively. This could lead to better automated 

glaucoma detection and, eventually, earlier diagnosis and 

treatment [23]. 

 

Hossain et al. (2024) Diagnose Diabetic Retinopathy from a 

patient's retinal imaging and determine if it is in its early, 

moderate, or advanced stages. Diabetic Retinopathy, 

Aptot2019 _blindness detection, and Messidor2 are the 

datasets utilized in the study. The research shows the 

comparison between CNN models, including Exception, Alex 

Net, VggNet-16,The ResNet-50 shows better performance 

than other models [24]. 

 

Kolte, et al. (2023) DL model, which can improve the 

model's accuracy while decreasing the amount of data needed 

for training. With a rate of 52.75%, SVM was the most 

accurate of the ML algorithms that were evaluated. Efficient-

Net came out on top when compared to other DL approaches, 

boasting an impressive AUC of 0.91 and an accuracy rate of 

91.8%. Efficient-Net and other DL algorithms excel at 

detecting diabetic retinopathy [25]. 

 

Butt, et al. (2022) Diabetic eye disease, also known as 

retinopathy, is a condition that gradually worsens in diabetics 

over time. Potential harm to the eyes could arise. In type 1 

diabetes mellitus, elevated blood sugar levels do not go 

down. By integrating features retrieved from pre-trained 

CNN models using TL, a hybrid feature vector may be 

created, which improves the performance of DR detection for 

fundus images. The planned enhanced method achieved high 

levels of accuracy in both binary and multiclass 

classification, reaching 97.8% and 89.29%, respectively [26]. 

 

Mohamed, Elmohsen and Basha, 2021, Evaluate the DR 

characteristics' effects on each color channel, priorities the 

channels, and calculate their main components (PCA). Next, 

these channels are fed into the DL model, and the grading 

decision is made by applying a majority voting system to the 

model's output. Both local dataset (consisting of about 100 

photos) and a publicly available dataset (containing about 

80,000 color fundus images) were used to train and evaluate 

the proposed models. An increase of 85% in accuracy, 89% 

in sensitivity, and 96% in specificity was observed in DR 

multi-class classification results [27]. 

 

Existing studies show that DL and transfer learning methods 

can help find diabetic retinopathy and glaucoma, but there are 

still some areas that need more research. Many models 

depend on large, well-labelled datasets that aren't always very 

big or varied, which makes it hard to use these models in 

real-life clinical settings. In addition, the way things are done 

now often only uses one type of fundus picture and doesn't 

include multi-modal imaging data like OCT or visual field 

tests, which could help with accuracy in diagnosis. 

Furthermore, most studies put classification performance 

above interpretability, which is still a major obstacle to 

clinical use. Not much research has also been done on 

lightweight, resource-efficient designs that can be used in 

places with few resources, which is exactly where early 

diagnosis is most needed. Filling in these gaps could lead to 

AI-driven diagnostic systems that are more reliable, easy to 

understand, and flexible. 

 

 

Table 1: Comparative analysis of recent studies on diabetic retinopathy and glaucoma detection using machine learning. 

Author Dataset Methodology Key Findings Advantages Limitations Future Work 

Guzal 

Kangilbaeva 

[21] 

Public DR 

fundus dataset 

AI-based DR 

diagnosis using 

visualization & 

segmentation 

of fundus 

images with 

DL 

AI programs 

show 82–

99.1% 

sensitivity for 

vision-

threatening DR 

diagnosis in 

low-income 

areas 

High 

sensitivity; 

enables 

screening in 

underserved 

regions 

Dataset details 

not provided; 

general 

discussion of 

AI programs 

Validate on 

large, diverse 

datasets; 

integrate with 

clinical 

workflow 

Karambelkar, 

et al. [22] 

Color fundus 

images 

CNN-based 

staging of DR 

using deep 

learning on 

fundus images 

CNN 

effectively 

detects and 

stages DR, 

aiding early 

diagnosis 

Supports early 

detection of 

DR in 

working-age 

adults 

Specific 

accuracy/metri

cs not reported 

Expand to 

multiclass 

severity 

grading and 

real-world 

testing 

Afshan, 

Chakraverti & 

Chhabra, [23] 

5000 retinal 

images 

MobileNetV3 

with 

preprocessing 

(resizing, 

greyscale, 

Gaussian 

noise), data 

augmentation 

MobileNetV3 

model achieves 

excellent 

classification 

accuracy for 

glaucoma 

detection 

Standardized 

preprocessing 

improves 

robustness; 

efficient 

architecture 

Only glaucoma 

addressed; no 

multi-disease 

detection 

Extend to 

multi-disease 

diagnosis and 

real-time 

deployment 

Hossain, et al. 

[24] 

Diabetic 

Retinopathy, 

APTOS 2019, 

Messidor2 

Comparison of 

CNN 

architectures: 

Xception, 

AlexNet, 

VGG-16, 

ResNet-50 

outperformed 

others in DR 

stage detection 

Comprehensive 

comparison of 

CNNs; 

validated on 

multiple 

datasets 

Focused on 

CNNs only; no 

hybrid/ensembl

e models 

explored 

Explore hybrid 

or ensemble 

approaches for 

further 

improvement 
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ResNet-50 

Kolte, et al. 

[25] 

Kaggle DR 

dataset 

Image resizing 

+ Haralick & 

Hu features + 

ML (SVM) vs. 

EfficientNet 

DL 

EfficientNet 

achieved 

highest 

accuracy 

(91.8%) and 

AUC (0.91), 

outperforming 

SVM 

Deep learning 

superior to 

classical ML; 

EfficientNet 

highly effective 

SVM and 

classical ML 

underperform 

significantly 

Investigate 

lightweight 

models and 

interpretability 

of EfficientNet 

Butt, et al. [26] Fundus images  Transfer 

learning on 

pre-trained 

CNNs with 

hybrid feature 

vector 

Achieved 

97.8% 

accuracy 

(binary) and 

89.29% 

(multiclass) in 

DR detection 

The hybrid TL 

model 

improves 

detection 

performance 

significantly 

Dataset size 

and diversity 

not mentioned 

Test on larger 

datasets; 

optimize for 

multiclass DR 

detection 

Mohamed, 

Elmohsen & 

Basha, [27] 

Public dataset 

(~80K images) 

+ local test set 

(~100 images) 

PCA-based 

channel 

selection + 

deep learning + 

majority voting 

Increased DR 

multi-class 

accuracy: 85%, 

sensitivity: 

89%, 

specificity: 

96% 

Channel-wise 

analysis boosts 

multi-class 

performance 

Limited testing 

on local dataset 

(small size) 

Expand 

evaluation on 

larger, diverse 

test sets 

. 

5. Methodology 
This study's research technique is based on a complete 

pipeline that starts with using the publicly available Messidor 

dataset. Image cropping, greyscale to black and white 

conversion with thresholding, denoising with Gaussian 

blurring, and contrast enhancement with histogram 

equalization in YUV color space are all part of the initial 

stage of preprocessing. Figure 1 illustrates the Flowchart for 

diabetic retinopathy illustrates this process. The images are 

shrunk to a size of 200×200×3 pixels. Data augmentation 

approaches to fix class imbalance include rotating, flipping, 

zooming, and adjusting brightness and contrast. Training, 

validation, and test sets make up the dataset in a proportion of 

70:10:20. CNNs are trained to classify data into two 

categories using a series of operations including batch 

normalization, max pooling, flattening, dropout, and ReLU 

activation. Recall, accuracy, precision, F1-score, ROC-AUC, 

and confusion matrix analysis are some of the approaches 

used to evaluate the model's performance. 

 

 

Figure 1: Propose Flowchart for Diabetic Retinopathy. 

 

 

The detail explanation of the propose methodology steps 

shown in the flowchart is provided in the next section. 

 

5.1. Data collection 

At ADCIS39, you can find the Messidor benchmark dataset, 

which is open to the public. The skilled ophthalmologists 

have painstakingly annotated around 1200 color fundus 

photos. Pictures taken by three different ophthalmology 

clinics make up the dataset. In all, about 800 pictures were 

captured with and 400 without pupil dilatation. They use four 

categories to identify these photographs based on the severity 

of the retinopathy. As seen in Figure 2, the image data is 

divided into four categories. 

 

Figure 2: Pie Chart for Distributions of Classes. 

 
 

Retinopathy severity levels in diabetic eye disease are shown 

in Figure 2, which shows the class distribution of the 

Messidor dataset. At 45.5%, DR Level 0 (No DR) is the most 

common, followed by DR Levels 2, 3, and 1 with 
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corresponding shares of 21.2%, 20.6%, and 12.8%. There is a 

clear class imbalance in the sample across severity ratings, as 

seen by the distribution. 

 

Figure 3: Enhancement of Sample Images from Messidor 

Dataset. 

 
 

Figure 3 displays the enhanced fundus pictures obtained 

from the Messidor dataset. There are two columns of four 

photos each depicting the retina in the figure. DR research 

makes use of images that demonstrate the enhancement or 

preprocessing of ophthalmological data to better expose 

retinal characteristics such the macula, optic disc, and blood 

vessels. 

 

5.2. Image preprocessing 

Improving the quality to enable accurate and dependable 

model predictions is the primary goal of data preprocessing, 

an essential step in guaranteeing the success of DL 

procedures. The goal is to fix problems including data 

augmentation, noise, greyscale conversion, and picture 

cropping. Images are preprocessed in this research using a 

number of procedures that are detailed below. 

 

Image cropping: The dark pixels surrounding the retina 

were clipped out of the images. Because of this, the 

annotation files no longer reflect the original lesion locations 

with bounding boxes [28]. There is an unflattering black 

backdrop in all of the photographs in the collection: A dark 

background is typically used to depict the fundus in images. 

The blood vessels, optic nerve, and retina are all located in 

this region. The Bounding Box Method for Cropping.  

 

Gray scale conversion: Greyscale was applied to the 

images. Then, cv2.threshold() was used to apply the 

threshold, which ranged from 10 to 255. This process creates 

a binary image by separating the image's black backdrop 

from the remainder of the picture. 

 

5.3. Image denoising 

Noise reduces the clarity and interpretability of images by 

obfuscating details and distorting features, and can enhance 

the image's visual quality by eliminating noise. Using 

cv2.GaussianBlur() to apply a Gaussian blur to dataset in 

order to eliminate noise. As shown in Equation (1), a popular 

technique for image smoothing is the Gaussian blur, which 

uses a weighted average of the values of nearby pixels to 

replace each pixel's value. 

 

 (1) 

 

The standard deviation is denoted by σ, the distances from 

the centre of the kernel are denoted by x and y, and the 

Gaussian kernel is represented by G(x, y). The amount of 

image smoothing is affected by the size of the Gaussian 

kernel. From 1 × 1 to 7 × 7, tried out different kernel sizes. 

The loss of important features in the retinal images was 

substantial when using larger kernels, despite the fact that 

they provided more smoothing. An efficient method for 

balancing noise reduction was the 3 × 3 kernel. 

 

5.4. Image enhancement  

The images are given Histogram Equalisation (HE). To 

improve the contrast of a picture, histogram equalisation 

moves the intensities of pixels from the RGB colour space to 

the YUV colour space using cv2.cvtColor() [29]. Histogram 

Equalisation is a way to change the way the intensity values 

are spread out in a picture so that they are spread out evenly 

in the output image. The method for equalising a histogram is 

shown below in Equation (2): 

  

 

This is how you find the equalised intensity I′(x, y) of a pixel 

with intensity I(x, y), the Equation (3) defined as below: 

 (3) 

 

In this equation, M × N is the total number of pixels in the 

picture, and Is the cumulative histogram's lowest 

nonzero value. 

 

5.5. Image resizing 

All the images are adjusted so they are the same size, which 

is 200 × 200 × 3 pixels. Here, pixel dimensions are given by 

the first two numbers, and the presence of the RGB (red, 

green, and blue) colour channels is indicated by the third 

number. Images are resized to a consistent resolution to 

guarantee input data format uniformity. 

 

5.6. Data augmentation 

Fewer samples of severe DR compared to normal or mild 

cases might be an issue with retinal imaging datasets like 

MESSIDOR, which are frequently small and may have an 

imbalanced class distribution. The training dataset is 

artificially expanded using data augmentation techniques (as 

shown in Figure 4). These techniques generate plausible 

modifications of existing photos without changing their 

diagnostic value. 

 

Figure 4: Sample Image of Data Augmentation Techniques. 
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A sample of each augmentation approach is shown in Figure 

4. Pre-processed fundus pictures of the retina used to train 

DL algorithms to identify diabetic retinopathy. Starting from 

a single pre-processed image, multiple augmented versions 

are generated using geometric and photometric 

transformations. These include vertical and horizontal flips to 

introduce orientation variability, zoom to simulate scale 

changes, and rotation to make the model invariant to angular 

differences. Additionally, image quality is varied through 

contrast adjustment, color adjustment, and brightness 

adjustment to reflect different imaging conditions. 

 

5.6. Data splitting 

The augmented dataset consists of three parts: training, 

validation, and testing. Seventy percent of the dataset is used 

for training, ten percent for validation, and twenty percent for 

testing in this study. You use the training set to train your 

model, and the testing set to see how well it performs. 

 

5.7. Proposed CNN model 

One type of DL model commonly used for visual data 

analysis is a CNN. CNN uses a series of convolutional layers 

to train automatically and extract valuable features from 

incoming data [30,31]. The four convolutional layers consist 

of two max-pooling layers, one flattening layer, one fully-

connected layer, one batch-normalization layer, and one 

dropout layer. Figure 5 shows that the CNN has been 

partitioned into three equal parts. 

 

The initial block is made up of two convolutional layers, with 

a 3 × 3 kernel size and 32 filters in each layer. 

 

Figure 5: CNN architecture in DR Image. 

 
This layer's job is to automatically activate ReLU to extract 

features from input retinal pictures [32]. It has a 64-filter 

convolutional layer and a 128-filter convolutional layer. Max 

pooling is required following two convolutional layers, each 

of which has 32 filters and ReLU activations, according to 

Equations (4-6). 

 

  (4) 

  (5) 

  (6) 

 

Where ∗ stands for convolution, W_1 and W_2 are 3x33 

convolution kernels with 32 filters each, and P_1 is the 

feature map that was pooled. Used a smaller filter value in 

the previous convolutional layers of Block 1 to find low-level 

features in the input pictures, such as edges, textures, and 

basic shapes. Used bigger filters (64, 128) to pick up more 

general features like patterns, structures, or items as went 

deeper into the CNN network. There are two lower 

convolutional layers with ReLU activations and 64 and 128 

filters. Then there is max pooling in Equations (7)-(9). 

 (7) 

 (8) 

 (9) 

 

W3 contains 64 filters, while W_4 Contains 128 filters. In 

order to make the feature maps one-dimensional arrays, the 

Flatten layer converts them. One must first "flatten" the data 

before it can be input into fully connected layers. They 

achieve this by converting the 2D feature maps generated by 

the convolutional layers into a 1D array. In order to transform 

the combined feature maps into a one-dimensional vector, 

they employ Equation (10). 

 (10) 

 

This transformation is crucial because in order for fully 

linked layers to do advanced reasoning and classification, 

they require a flattened input. The sigmoid activation 

function was utilised for 2-stage categorisation. A dense layer 

implemented subsequent to batch normalisation and dropout 

regularisation in Equation 11. 

 (11) 

where are  weights and biases of the fully connected layer 

in Equation (12). 

 (12) 

 

where Is final output in Equation (13),  results from two 

blocks of convolution and  This can be used to determine 

the chance of each input being either the presence or absence 

of retinopathy, and returns a probability between 0 and 1 for 

each input. 

 

5.8. Performance matrix 

Verifying a classification model's precision is possible with 

the use of a confusion matrix, a common table in ML. This 

matrix summarizes the expected and actual class labels for a 

particular set of test data [33]. The confusion matrix is 

available at this location In this context, TP, FP, TN, and FN 

represent the numbers of correct predictions made by the 

negative class, incorrect predictions made by the negative 

class, false positives made by the positive class, and true 

negatives made by the negative class, in that order. A 

confusion matrix can be used to compute several assessment 

metrics. This includes F1 score, recall, accuracy, and 

precision. 

 

5.8.1. Accuracy: This metric counts how many pixels in the 

dataset depict blood vessels in relation to how many pixels in 

the segmented image that were correctly allocated [34]. Then, 

in Equation (13). 

  (13) 

 

5.8.2. Precision: The ratio of correctly predicted positive 
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instances to total positive examples is one way to describe a 

model's accuracy rate. Equation (14) describes the model's 

capacity to prevent false positives: 

  (14) 

5.8.3. Recall: The recall, sensitivity, or true positive rate is a 

measure of how many out of all positive cases were 

accurately predicted. Equation (15) describes the model's 

capacity to prevent false negatives: 

  (15) 

5.8.4. F1 Score: The F-score quantifies the precision of a 

test. A dataset is considered imbalanced if its positive 

outcomes are less than its true positive findings, as shown in 

Equation (16): 

  (16) 

5.8.5. ROC Curve: The true-positive rate and false-positive 

rate are used to plot the ROC curve, which is a graphical 

representation of the classifier's performance. A higher value 

for analysis of variance (AUC) [35] indicates a better 

classification rate; it is a representation of the performance 

model. 

 

6. Results and Discussion 
Using ML algorithms on the MESSIDOR dataset, this part 

shows the experimental results for diabetic retinopathy 

identification. The primary metrics employed to evaluate the 

proposed model for binary classification tasks include 

accuracy, precision, recall, and F1-score. Using matplotlib 

and other necessary Python libraries for medical image 

processing and analysis, the implementation was carried out 

in a Jupyter Notebook environment on Google Colab. The 

studies were carried out using a workstation that had the 

necessary hardware to handle the computational needs of DL 

models on high-resolution retinal images. It came with 64 GB 

RAM, an NVIDIA RTX 3090 GPU, and an Intel Core i9 

CPU. To back up the efficacy of the suggested CNN method 

for automated screening and diagnosis in clinical 

ophthalmology settings, the following outputs give 

comprehensive insights into the findings of DR identification. 

 

Figure 6: Confusion Matrix of CNN for Binary 

Classification. 

 
 

This testing set's binary diabetic retinopathy categorization 

using CNN is shown in Figure 6, which also contains the 

confusion matrix for that set. The matrix shows that the 

model can distinguish between cases of diabetic retinopathy 

and glaucoma; it has 431 class 0 true negatives, 523 class 1 

true positives, 6 erroneous positives, and 0 false negatives. 

The results show that the categorization accuracy is high. 

 

Figure 7: Accuracy Graph for Training and 

Validation of CNN. 

 
The accuracy curves for training and validation of CNN-

based binary classification are displayed in Figure 7. Over the 

course of 30 epochs, the blue line represents the training 

accuracy, which rose from 0.58 to almost 1.0. After some 

early fluctuations including a spike around epoch 5 the 

orange validation accuracy line settles at 1.0 after epoch 15, 

indicating that the model has successfully converged. 

 

Figure 8: Loss for Training and Validation using 

CNN Model. 

 
 

The CNN model's training and validation loss curves over 30 

epochs are shown in Figure 8. The training loss is going 

down, which means the model is learning well. Validation 

loss, on the other hand, shows substantial initial fluctuation 

before levelling off following a steep decline beginning 

around the eighth epoch. This pattern suggests that while the 

model initially struggled to generalize, it achieved improved 

stability and convergence in later epochs, ultimately 

indicating reduced overfitting and better generalization 

performance. 

 

Table 2: Proposed Model Performance for Diabetic 

Retinopathy on the Messidor Dataset. 

Evaluation 

Measure 

Convolutional Neural 

Network (CNN) 

Accuracy 99.37 

Precision 98.86 

Recall 99.90 

F1-score 99.42 

 

Using the MESSIDOR dataset, Table II presents the results 

of the performance evaluation of the proposed CNN model 

for diabetic retinopathy classification. The model 

demonstrates exceptional diagnostic performance with 

comprehensive metrics, including an accuracy of 99.37%. 

The high recall value indicates superior sensitivity in 

detecting diabetic retinopathy cases with minimal false 

negatives, while the balanced precision ensures low false 

positive rates. These outstanding results validate the CNN 

architecture's effectiveness for automated retinal disease 
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screening, demonstrating its clinical viability for early 

diabetic retinopathy detection and supporting 

ophthalmologists in diagnostic decision-making processes. 

 

Figure 9: ROC-AUC Graph for CNN Model. 

 
 

The ROC curve for the binary classification of DR and 

glaucoma in retinal pictures using CNN is shown in Figure 9. 

The red training ROC curve achieves perfect classification 

with AUC = 1.00, while the blue test ROC curve 

demonstrates excellent performance with AUC = 99.98. Both 

curves significantly outperform the diagonal reference line 

(random classifier), indicating superior model discrimination 

capability between diabetic retinopathy and glaucoma cases. 

 

6.1. Comparison and discussion 

The MESSIDOR dataset was used to compare diabetic 

retinopathy detection models in detail (Table III). Compared 

to its rivals, the suggested CNN model performs better across 

the board, with a 99.37% accuracy rate, 98.86% precision, 

99.90% recall, and 99.42% F1-score. From the baseline 

models, there is a noticeable drop in performance When 

looking into ResNet50 [36] vs. KNN [37], they can see that 

ResNet50 obtains a higher accuracy (97.08%), precision 

(94.04%), recall (94.04%), and F1-score (94.04%), but KNN 

only manages a recall (90.62%), precision (90.71%), and 

accuracy (90.62%). Compared to other metrics, 

InceptionV3's 97% accuracy, precision, recall, and F1-score 

[38] are similar. When compared to the control models 

(ResNet50, KNN, and InceptionV3), the proposed CNN 

architecture achieves superior performance in the automated 

detection of diabetic retinopathy. It has a very high recall rate 

of 99.90%, which means it can identify positive cases very 

well while minimizing false negatives, which is important for 

medical diagnosis applications. 

 

Table 3: Comparison Between Proposed and Existing 

Models' Performance for Diabetic Retinopathy Classification. 

Matrix Resnet50 KNN InceptionV3 CNN 

Accuracy 90.62 97.08 97 99.37 

Precision 90.71 94 97 98.86 

Recall 90.62 94 97 99.90 

F1-score 90.52 94 97 99.42 

 

The proposed CNN model beats baseline methods for 

detecting DR from fundus images by a large margin. Medical 

image analysis was its primary inspiration for its unique 

architecture, which improves classification accuracy by 

efficiently extracting both low- and high-level data. Unlike 

generic models, the CNN shows strong generalization with 

stable training and validation performance, reduced 

overfitting, and robust convergence. A further important 

feature for clinical diagnosis is its high sensitivity in 

detecting positive instances, which helps to reduce the 

likelihood of false negatives. The model's exceptional 

performance on all important evaluation criteria, along with 

its remarkable ability to distinguish between diabetic 

retinopathy and non-DR cases, proves that it is effective for 

automated screening of retinal diseases and might be 

integrated into clinical decision-support systems. 

 

7. Conclusion and Future Work 
DR ranks as the leading cause of eye problems and blindness 

among people with diabetes globally. Early identification and 

accurate classification of DR will help to considerably slow 

down the development of DR and thereby determine the 

timeliness of intervention and treatment. This research 

presents an effective DL-based framework for automated 

diabetic retinopathy detection using a custom-designed CNN. 

Through the integration of a robust image preprocessing 

pipeline and a lightweight, domain-specific CNN 

architecture, the proposed model achieves superior diagnostic 

performance, recording an accuracy of 99.37% and an AUC 

of 99.98%. These results significantly outperform 

conventional architectures such as ResNet50, InceptionV3, 

and KNN, validating the clinical relevance of the proposed 

model for early DR detection and decision support in 

ophthalmology. Despite its high performance, the study is 

subject to certain limitations. The binary classification 

formulation restricts the model’s applicability in scenarios 

requiring fine-grained grading of DR severity. Additionally, 

evaluation was limited to a single dataset, potentially 

impacting generalizability across diverse populations and 

imaging conditions. Future research will focus on extending 

the model to multi-class classification to enable detailed 

severity grading. 
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